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Abstract. We present several methods, which utilize symplectic inte-
gration techniques based on two and three part operator splitting, for
numerically solving the equations of motion of the disordered, discrete
nonlinear Schrédinger (DDNLS) equation, and compare their efficiency.
Our results suggest that the most suitable methods for the very long
time integration of this one-dimensional Hamiltonian lattice model with
many degrees of freedom (of the order of a few hundreds) are the ones
based on three part splits of the system’s Hamiltonian. Two part split
techniques can be preferred for relatively small lattices having up to
N =70 sites. An advantage of the latter methods is the better conser-
vation of the system’s second integral, i.e. the wave packet’s norm.

1 Introduction

Disordered systems are models of usually many degrees of freedom trying to mimic
heterogeneity in nature. Typically they are obtained by attributing to one of the
system’s parameters a different, random value for each degree of freedom. It is well-
known that in linear disordered systems energy excitations remain localized. This
phenomenon was first studied by Anderson in 1958 [1] and for this reason is usu-
ally called “Anderson localization”. This behavior plays an important role in several
physical processes, like for example the conductivity of materials, the dynamics of
Bose-Einstein condensates etc.

In the last decade the effect of nonlinearity on disordered systems has attracted
extensive attention in theory and simulations [2-21], as well as in experiments [22—
24]. A fundamental question in this context is what happens to energy localization
in the presence of nonlinearities. Several studies of the disordered variants of two
fundamental one-dimensional Hamiltonian lattice models, namely the Klein-Gordon
(KG) oscillator chain and the discrete nonlinear Schrédinger equation (DDNLS), de-
termined the statistical characteristics of energy spreading and showed that nonlin-
earity destroys localization [12-14,17-19]. In these works the existence of different
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dynamical behaviors and spreading regimes was revealed, their particular dynami-
cal characteristics were determined and their appearance was theoretically explained.
The DDNLS model was used for the theoretical treatment of wave packet spreading,
while numerics in both models were employed for verifying the obtained theoretical
results.

The numerical integration of the KG model proved to be computationally easier
than the DDNLS system, as the KG Hamiltonian can be readily split into two inte-
grable parts (namely the kinetic and the potential energy). This splitting permits the
application of several commonly used symplectic integrators (SIs) for the integration
of the KG model, like for example the SABA, integrator with corrector [25], which
proved to be a very efficient fourth order SI for this system [12,15-20]. On the other
hand, the numerical integration of the DDNLS model is a more complicated task,
which requires the implementation of some specially designed techniques (see for ex-
ample the appendices of [15,19] for more details). Nevertheless, the required CPU
times did not allow the computation of the system’s evolution up to the same final
times as for the KG model; typically for the same computational effort wave packets
in the KG model were propagated in time up to one or two orders of magnitude longer
than in the DDNLS system.

Although, nowadays it is common knowledge that energy spreading in disordered
lattices is a chaotic process, the characteristics of this chaotic behavior have not
been studied in detail. The first attempt to systematically investigate chaos in one-
dimensional, disordered, nonlinear lattices was performed in [20] for the KG model.
In that study the use of SIs was extended according to the so-called ‘tangent map
method’ [26-28] to integrate both the orbit itself, as well as a small deviation vector
about it, whose evolution is needed for the computation of a chaos indicator like the
maximum Lyapunov exponent (see for example [29] and references therein). These
computations are easier for the KG model than for the DDNLS system and that is
why the former system was chosen in [20]. In that paper it was shown that although
chaotic dynamics slows down (as is indicated by the continuous decrease in time
of the maximum Lyapunov exponent), it does not cross over into regular dynamics.
Nevertheless, performing similar computations also for the DDNLS model is neces-
sary for supporting the possible generality of the results obtained in [20].

Thus, although our understanding of the dynamical evolution and the chaotic
behavior of disordered lattices has been improved in recent years, several important
questions remain open: Will wave packets continue spreading indefinitely, as current
numerical simulations indicate [10-21], or will they eventually exhibit a less chaotic
behavior, leading to the halt of spreading, as is conjectured by some researchers
[30,31]? How does wave packet’s chaoticity depend on the initial excitation, and how
does it evolve in time? In order to address these questions we need to perform compu-
tationally expensive numerical simulations and investigate the asymptotic behavior
of different disordered lattice models. Thus, the construction of numerical schemes,
which will allow the accurate and efficient integration of multi-dimensional DDNLS
models is imperative. Several such methods have been proposed and implemented in
recent years, see e.g. [15,19,32-35]. In this work, we focus our attention to methods
based on symplectic integration techniques and investigate their performance.

The paper is organized as follows. In Sect. 2, after a brief discussion of the prop-
erties of SIs, we describe integration methods that are based on the splitting of the
DDNLS Hamiltonian in two integrable parts. Section 3 is devoted to symplectic inte-
gration techniques obtained by splitting the DDNLS Hamiltonian in three integrable
parts. Then, in Sect. 4 we compare the performance of all these numerical schemes
for the integration of the DDNLS system, while in Sect. 5 we summarize our results
and present our conclusions.
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2 Two part split integration schemes

Symplectic integrators are nowadays standard and widely implemented numerical
techniques for Hamiltonian dynamics. Their use for the integration of the Hamilton
equations of motion has two main advantages: it a) keeps the error of the computed
value of the Hamiltonian function (which is an integral of motion, usually referred
as the system’s “energy”) bounded, irrespectively of the total integration time, and
b) results in efficient numerical procedures, as it allows the utilization of relatively
large integration steps 7, which lower the required CPU time. These characteristics
make SIs the ideal tools for the long time integration of multidimensional DDNLS
systems.

Symplectic integrators approximate the real solution of the Hamilton equations of
motion by replacing the dynamics of the Hamiltonian system by appropriately chosen
successive actions of other simpler (and usually integrable) functions, whose sum is
the initial Hamiltonian. Usually, symplectic splitting methods are implemented by
separating the Hamiltonian in two integrable parts (for an overview see for example
[36, Sect. I1.5] [37-40] and references therein), although SIs based on three part splits
have also been used [34,35,41-44].

In what follows we briefly describe the use of SIs for the integration of an au-
tonomous Hamiltonian function which splits in two integrable parts. For this pur-
pose, let us consider a system of N degrees of freedom (ND) described by the
Hamiltonian function H(x) = h = constant, where x = (q,p) represents the vec-

tor of generalized coordinates q = (q1,¢s, ..., ¢x) and momenta p = (p1,pa, ..., DN)-
Then, the Hamilton equations of motion are ‘2—’; = {x,H} = Lyx, where Ly =

{-,H} is a differential operator with {-,-} being the Poisson bracket defined by

{f, g9} = leil (%%’l — 3%%)’ for any smooth functions f(q,p) and g(q,p).
The formal solution of the equations of motion, for initial conditions x¢o = x(0),
is x(7) = > k>0 %TL]IC-IXO =elux.

Let us now assume that the Hamiltonian function can be split in two inte-
grable parts as H(x) = A(x) + B(x), so that the action of the operators e™l4
and e"%5 is known analytically. Then, a SI of order n approximates the operator
e™l# by a product of p operators e%7F4 and e®7F5 (which represent exact integra-
tions over times a;7 and b;7 of Hamiltonians A(x) and B(x) respectively) according
to ehu = em(batle) = [TP_ ewrlaehirle 1 O(7+1). The constants a; and b; are
chosen specifically to reach the desired order of the integrator.

The DDNLS system is a one-dimensional lattice model of N coupled nonlinear
oscillators described by the Hamiltonian [19,34,35]

N
Hp = Z% (@ +p7) + g (¢ +p?)2 — Pi+1Pi — Gi+1Gi, (1)

where ¢; and p; are, respectively, the generalized position and momentum of
site i, the random on-site energy coeflicients ¢; are chosen uniformly from the interval
[-W/2,W /2], with W denoting the disorder strength, and 8 > 0 is the nonlinearity’s
strength, while fixed boundary conditions (qn+1 = py+1 = 0) are imposed. This
model has two integrals of motion as it conserves the energy Hp (1) and the norm

-3

=1

(¢ +1?). (2)

DN | =
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The Hamiltonian (1) can be split in two integrable parts

N

N
A= Z 5 (a7 +p7) + g (a7 +pf)2 and B = Z —Pi+1Pi — 4i+1Gis (3)

=1 i=1

whose operators e”4, e7L5 can be obtained analytically [45]. In particular, the prop-
agation of initial conditions (g;,p;) at time ¢, to their final values (¢}, p}) at time ¢ +7
is given by the operators

r_ ] e '
erba {4 = aicoslaim) Fpisinfair) oy (4)
p; = Di COS(aiT) —q; sm(aﬂ)
eTLB . (q/7p/)T — C(T) . (q’ p)T’ (5)
where a; = € + B(¢? + p?)/2, C(7) is a matrix whose expression is obtained in

Appendix A, and (7) denotes the transpose of a matrix. The operator e"/4 has
already been used in the literature [19,33-35], while, to the best of our knowledge,
this is the first time that the expression (5) of "5 with respect to the matrix C(7)
is reported. We note that since the integration step 7 of Sls is typically kept constant,
the matrix C(7) appearing in (5) remains constant for each numerical implementation
of the operator e™ 75,

Based on this splitting we consider in our study several SIs of different orders.
An extensively used simple SI of order two is the so-called leap-frog (LF') or Verlet
integrator (see for example [36, Sect. 1.3.1])

LF(r) = exlagTlegzla, (6)

This is an integrator of 3 steps, i.e. 3 individual applications of operators of integrable
Hamiltonian functions. The SABA, integrator [25]

S.ABAQ (7_) _ ecl'rL_Aedl'rLgecerAedl'rLB eclTLA’ (7)

with ¢; = % (1 — %), Cy = %, dy = %, is another integrator of order two having

5 steps. The order of this integrator can be improved when the term {8, {5, A}} leads
to an integrable system, as in the common situation of A being the usual kinetic energy
and B the potential energy depending only on positions. In that case, the addition
of two extra corrector steps at each end of the integration scheme increases its order
from two to four. For the DDNLS Hamiltonian (1) we have

N
{B, A} = Z a; [qi(pi—1 + piv1) — Pi(Qi—1 + qiv1)] (8)

i=1
and consequently

N

{B.{B,A}} = Z { ﬂ{‘ﬁ(pi—l + pit1) — pi(gi-1 + q¢+1)]2+

i=1
+(0ti — 0lz>1> {%’2—1 + P24 + Gi1Git1 + Pi—1Dit1

]+ ©
+(ai - Cvi+1) [QZZH + D1+ Gi-10i11 +pz‘71pi+1] },
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which does not seem to be integrable. Thus, we do not combine the SABA, integrator
with a corrector term, as was done for example for the KG model [15].

We also consider two fourth order integrators: the one found by Forest and Ruth
[46] and by Yoshida [47] having 7 steps

S4(T) _ eclTL.A eleLBeCZTLA edzTLBecz‘rLAeleLgeclTL_A7 (10)
. _ 1 _1-2'/3 _ 1 _ 21/3
with Cc1 = 2(2_2173)° Cy = 2(2-2173)° d1 = 351/3>» d2 = T3 313 and the ABA864

method introduced in [48] having 15 steps. The particular values of the coefficients
appearing in the expression of the AB.A864 SI are given in Table 3 of [48].

In [47] symmetric compositions of second order integrators were used to construct
higher order SIs. As a sixth order integrator we consider in our study the integrator
produced by the composition method referred as “solution A” in [47], because accord-
ing to [49] it shows the best performance among the ones presented in [47]. According
to this technique, starting from any second order SI S2, a sixth order integrator S°
is constructed as

S8(1) = S (w37)S%(wor)S? (w1T)S? (woT)S? (w1 T)S% (o) S? (wsT). (11)

The exact values of w;, i = 0,1, 2,3 can be found in [36, Chap. V, Eq. (3.11)] and [47].
Using the second order SABA; integrator (7) in (11) we construct the sixth order
integrator Sg having 29 steps.

3 Three part split integration schemes

In [35] several SIs based on a three part split of the DDNLS Hamiltonian were devel-
oped. For these methods the Hamiltonian (1) is written as the sum of the following
three integrable parts

N N N

€ Ié) 2

A=) S (@ +p)+5 (@ +p])" B==) pippi and C==3 qing (12)
i=1 i=1 i=1

The operator e™X4 is exactly the same as operator e (4), while the operators

corresponding to parts B and C' are given by

P; = Di
ertr gt : (13)
4 = ¢ — (Pi—1 +pit1)T

qé =4
eTke . { (14)

P = pi + (¢i—1 + qit1)7T .

We include in our study the following three part split SIs which showed a particularly
good performance in [35] for the integration of the DDNLS model: ABC[‘*Y], 584,

SS4s, which are of order four, and the sixth order scheme ABC[%S]. We note that
schemes ABCE‘Y] and ABCFSS] are created by appropriate compositions of the basic
three part split integrator of order two ABC?(7) = e3laeslnerleeslnesla [35 41—
44], and have 13 and 45 steps respectively. The other two methods, SS* and SSg,,
are based on the performance of two successive two part splits of (1), i.e. we implement
a two part split SI following the splitting (3) where the B part is split again in two
parts (the B and C' Hamiltonians of (12)) and is integrated by the SAB A, integrator.
The specifications of each scheme can be found in [35].
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Fig. 1. Results for the integration of Hp (1) by the two part split SIs LF for 7 = 0.0025,
SABAy for 7 = 0.01, S* for = = 0.05, ABA864 for 7 = 0.175 and S® for 7 = 0.25
[(b) blue; (g) green; (br) brown; (y) yellow; (r) red]: time evolution of the logarithm
of (a) the absolute relative energy error E,(t), (b) the absolute relative norm error S-(t).
(c) the second moment mz(t), and (d) the required CPU time T.(¢) in seconds. Note that
in panel (d) the red and yellow curves practically overlap.

4 Numerical results

In order to investigate the performance of the various SIs, we consider as a test case a
particular, randomly chosen, disorder realization of (1) for N = 1000 sites, set W = 4
(i.e. €, € [—2,2]) and 8 = 0.72, and follow in time the evolution of an initially ho-
mogeneous excitation of the central 21 sites of the lattice. The initial norm density
of the excited sites is set to unity and consequently the wave packet’s norm (2) is
S = S(0) = 21. Initially each excited site gets a random phase. The particular random
configuration we consider in our simulations results to a total energy Hp ~ —28.501.
We note that this configuration corresponds to the so-called ‘strong chaos’ spreading
regime studied in [18].

To evaluate the performance of each tested SI we check whether the obtained so-
lutions correctly capture the wave packet dynamics by monitoring the time evolution
of the second moment my of the wave packet’s norm distribution z; = (¢Z + p?)/(25)
[12,15,18,19,34,35]. In addition, we monitor the preservation of the values of the
two integrals Hp (1) and S (2) by keeping track of the absolute relative errors
of the energy E,(t) = |[Hp(t) — Hp(0)]/Hp(0)|, and the norm S,.(t) = |[[S(t) —
S5(0)]/5(0)]. We also register the required CPU time T, needed for performing
each simulation.

In Fig. 1 we present results obtained by the two part split integrators discussed
in Sect. 2: LF (6) [blue curves|, SABAy (7) [green curves], S* (10) [brown curves],
ABA864 [yellow curves] and S® (11) [red curves]. The integration time step 7 of each
method was chosen so that all schemes keep the relative energy error bounded by
practically the same value E, ~ 107% [Fig. 1(a)]. Additionally, all these two part
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Fig. 2. Results for the integration of Hp (1) by the three part split SIs ABCﬁY] for
T = 005, SS* for 7 = 0.05, SSggs for 7 = 0.125 and ABC[GSS] for 7 = 0.225
[(b) blue; (r) red; (y) yellow; (g) green]|. The panels are as in Fig. 1.

split SIs preserve well the numerical value of the norm S (2), since the corresponding
S, quantities attain relatively small values [Fig. 1(b)] (although these values clearly
increase in time). This happens because the norm S (2) is an integral of motion of
both the A and B Hamiltonians of (3), as the direct computation of its time deriv-
ative in both systems shows (42 = {S, A} = 0 and 2 = {5, B} = 0). In addition,
all integrators succeed to correctly describe the system’s dynamics as they give prac-
tically the same time evolution of my [Fig. 1(c)]. From the results, of Fig. 1(d) we
see that the fourth order AB.A864 together with the sixth order scheme S% (11) show
the best numerical performance as they both require the least CPU time among all
tested methods.

In Fig. 2 we see results obtained by the three part split integrators considered
in our study (see Sect. 3): the fourth order schemes ABC[Ag(] [blue curves|, $5* [red

curves], SSgg, [yellow curves] and the sixth order integrator ABCfg [green curves].

Again, all integrators keep the relative energy error small (E, < 1075) for the particu-
lar choices of the integration steps 7 [Fig. 2(a)] and reproduce correctly the evolution
of the wave packet’s second moment [Fig. 2(c)]. A difference with respect to the two
part split SIs of Fig. 1 is that the values of the relative norm error S, [Fig. 2(b)] are
much larger than the ones reported in Fig. 1(b). The reason for this is the fact that
the norm S (2) is an integral of motion of B (3) but not of B and C (12) separately.
Furthermore, we note that also for three part split methods S, increases in time al-
though its increase rate is smaller than the one seen in Fig. 1(b). From Fig. 2(d)
we see that the sixth order integrator ABC[GSS] needs the least CPU time among the

tested Sls. The SSga, integrator exhibits the second best behavior, as it requires a
slightly larger CPU time than ABC%S], but keeps S, to acceptable levels (smaller

than ABC[Ag(] [Fig. 2(b)], with which they require practically the same CPU time
Fig. 2(d)]).
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logqo Te

Fig. 3. The logarithm of (a) the required CPU time 7. and (b) the time averaged relative
energy error (E,) for the integration of the DDNLS model (1) up to the final integration
time ¢ = 10* by the AB.A864 [(y) yellow curves] and the ABC’[%S] [(g) green curves] methods
for various values of the number of sites N. In (a) the slopes 2 and 1 are denoted by black
solid and dotted lines respectively.

It is worth noting that all three part split integrators of Fig. 2 require consider-
ably less CPU time than the two part split schemes of Fig. 1, as a direct comparison
of Fig. 1(d) and Fig. 2(d) reveals, despite the fact that more operators are involved
in the three part split methods. This happens because the application of e"5 (5)
is computationally very expensive, especially for high values of N. To illustrate the
dependence of the performance of the integration schemes on the number of the sys-
tem’s degrees of freedom N, we consider the best performing schemes among the two
part split methods (here we used AB.A864 as preliminary tests showed a slightly bet-
ter performance than for S%) and the three part split techniques (i.e. ABC[GSS]) and
monitor their behavior when N is varied.

In Fig. 3(a) we report the CPU time T, needed for each SI to integrate a lattice
of N sites up to t = 10* for various values of N up to N = 500. For each simulation
the integration time step was kept constant to 7 = 0.175 for the AB.A864 SI and to
7 = 0.225 for the ABC[GSS] one. The time average (over the whole duration of each

simulation) of the relative energy error (E,) for each method is seen in Fig. 3(b). We
see that for the particular choice of integration steps (E,) does not change signifi-
cantly as N varies, remaining close to values around 10~% for both methods.

From the results of Fig. 3(a) we see that the two part split SI AB.A864 requires
less CPU time than the three part split scheme ABC’[‘SSS] for values of N < 70. The

difference between the two methods becomes more pronounced as N increases. The
obtained results indicate that T, oc N? for AB.A864, while T, x N for ABC'[G’SS]7 as

indicated by the black lines shown in Fig. 3(a). This behavior can be easily under-
stood from the different computational complexity of the operators used in these two
splitting schemes. While operators "2 (13) and e">c (14) basically require the ad-
dition of two vectors, the multiplication of matrix C(7) with vector x in (5) requires
N? operations for each application of e”2%. Therefore, the results of Fig. 3(a) clearly
show that the three part split schemes should be used for large lattices, while rela-
tively small lattices (N of the order of a few tens) are better to be integrated by a two
part split SI. Let us note, that the behavior shown in Fig. 3(a) is independent of the
system’s spreading regimes as we obtained qualitatively similar results (not reported
here) for initial conditions in the so-called “weak chaos” and “selftrapping” regimes
(see [18] for more details on the definition of these regimes).
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5 Summary and conclusions

The numerical integration of the discrete nonlinear Schrodinger equation with dis-
order is computationally very challenging. In this work we presented and compared
various symplectic splitting techniques suitable to perform this task with the required
accuracy.

For SIs based on the splitting of the Hamiltonian in two integrable parts, we
explicitly presented (to the best of our knowledge for the first time) an analytical
solution for the operator e”*# (5). Besides being more compact, this form has the
advantage that various two part split numerical methods are readily available from the
literature. Using several suitable schemes we integrated the corresponding equations
of motion and showed that for this splitting the norm of the wave packet S (2) is
preserved naturally to a very high accuracy.

To investigate the importance of these results we also integrated the DDNLS
system with several three part split SIs, which are already known to be very well
suited for this problem [35]. We found that it is possible to obtain results with the
same level of relative energy error much faster with these three part split methods.
Furthermore, we showed that (and also explained why) the relative norm error S, is
much larger with respect to the two part schemes.

We also investigated how the performance of these integration schemes depends on
the number of degrees of freedom. For small lattices (with N < 70) the two part split
ABA864 scheme proved to be the most efficient one among all tested methods since
it required the least CPU time, while at the same time gave very accurate results.
Except for very high accuracy needs three part SIs should be used for larger lattices
since their computational complexity grows linearly with N, and not like N? as is
the case for two part split methods. We note that from the tested three part split
integrators the ABC’[GS 5] method showed the best performance.

We thank J.D. Bodyfelt for sharing his DDNLS computer code at the early stages of this
work. Ch.S. would like to thank J. Laskar for fruitful discussions and for pointing out that
the DDNLS model can be split in two integrable parts, as well as the Lohrmann Observatory
at the Technical University of Dresden for its hospitality during his visit in 2015, when part
of this work was carried out. Ch. S. was supported by the Research Office of the University of
Cape Town (Research Development Grant, RDG) and by the National Research Foundation
of South Africa (Incentive Funding for Rated Researchers, IFRR).

A Determination of matrix C(7) of equation (5)

The equations of motion for the Hamiltonian B of (3) can be written in the form

0 A
xT =Bx" = ( ) xT, (A1)
-AO0

where A, B are respectively N x N and 2N x 2N constant matrices, while 0 is the
N x N matrix having all its elements equal to zero. The A matrix is a tridiagonal ma-
trix with all the elements of its main diagonal equal to zero (A;; =0,i=1,2,...,N),
while all the elements of the first diagonals above and below the main one are equal
to —1 (A;i+1 = A;_1; = —1). The solution of system (A.1) for a time step 7 is

xT(t+71) = B7xT( i (B7)*xT(t) = C(7)xT(¢). (A.2)

k=0

=l -
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It can be easily seen by induction that

A2k 0 0 A2k+1
B = (-1)F , B = (—1)F , keN, (A3)
0 A2k A2k g

and consequently, matrix C(7) in (A.2) can be written as

cos(AT) sin(Ar)
C(r) =P = A4
™ ( —sin(AT) cos(AT) ) (A-4)
with
cos(AT) i sin(AT) i 2]<:+)1)A2k+1 k1, (A.5)

k=0 k=0

The evaluation of the elements of matrices cos(Ar1) and sin(A7) can be obtained
through the determination of the eigenvalues and eigenvectors of matrix A itself (see
for example [50]). In particular, the eigenvalues A\, of A are simple and symmetric
with respect to zero, and are given by

k
)\k:—2cos<N+7Tl), k=1,2,...,N, (A.6)

while its eigenvectors are orthogonal (since A is symmetric) and have the form

v 1 sin kT sin 2k sin Al (A.7)
LA Nt+1) "\ Nx1) M \NE1) ) '

with
[ 2N+1
) jkm 2N +1 SIH<N+1 kﬂ) N+1
= [lvill ZSIH = - = , o (A8)
N+1 4 4sin(37y) 2
where || - || denotes the usual Euclidean norm of a vector. The identities

(A.9)

ol 1 sin[(NJr%)x}
;COS (jx) = 3 ll + — (%)

(see for example [51, Eq. 1.342-2.]) and sin[(2N +1) kx/(N +1)] = —sin[kn /(N +1)]
were used to obtain the last equahty of (A.8). The matrix S having as columns
the eigenvectors (A.7), i.e. S = (v, vi, ..., v}y), can be used to diagonalize A.
Thus, A = SDS (since S~ = ST = S), with D being the diagonal N x N matrix
having as diagonal elements the eigenvalues (A.6), i.e. D = diag(A1, A2, ..., AN).
Then, from (A.5) we see that matrices cos(A7) and sin(A7) defining C(7) in
(A.4) can be written as cos(A7) = SD.S and sin(A7) = SD,S with D, =
diag(cos(A17),cos(AaT), ..., co8(AnT)), Ds = diag(sin(A\17),sin(Aa7), ..., sin(Ay7)).
Consequently, C(7) (A.4) is a constant matrix for a fixed integration time step 7.
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